
1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2019.2910666, IEEE
Transactions on Image Processing

1

Reference-free Quality Assessment of Sonar Images
via Contour Degradation Measurement

Weiling Chen, Ke Gu, Weisi Lin, Fellow, IEEE, Zhifang Xia, Patrick Le Callet, Fellow, IEEE, and En Cheng

Abstract—Sonar imagery plays a significant role in oceanic
applications since there is little natural light underwater, and
light is irrelevant to sonar imaging. Sonar images are very
likely to be affected by various distortions during the process
of transmission via the underwater acoustic channel for further
analysis. At the receiving end, the reference image is unavailable
due to the complex and changing underwater environment and
our unfamiliarity with it. To the best of our knowledge, one
of the important usages of sonar images is target recognition
on the basis of contour information. The contour degradation
degree for a sonar image is relevant to the distortions contained
in it. To this end, we developed a new no-reference contour
degradation measurement (NRCDM) for perceiving the quality
of sonar images. The sparsities of a series of transform coef-
ficient matrices, which are descriptive of contour information,
are first extracted as features from the frequency and spatial
domains. The contour degradation degree for a sonar image is
then measured by calculating the ratios of extracted features
before and after filtering this sonar image. Finally, a bootstrap
aggregating (bagging)-based support vector regression (SVR)
module is learned to capture the relationship between the contour
degradation degree and the sonar image quality. The results of
experiments validate that the proposed metric is competitive with
state-of-the-art reference-based quality metrics and outperforms
the latest reference-free competitors.

Index Terms—Image quality assessment (IQA), reference-free,
sonar image, degradation measurement, bagging

I. INTRODUCTION

W ITH the expanding scale of ocean-related technolo-
gy development, oceanic applications, such as ocean

exploration, underwater navigation, and underwater acoustic
communication, are growing rapidly. As an important carrier
of oceanic information, sonar images can reflect underwater
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scenes in darkness because sonar imaging is independent of
illumination. Both the process of acquisition and transmission
may introduce distortion into sonar images. In the acquisition
process, sonar images may contain radiometric distortion,
speckle noise, and other typical artifacts due to the propagation
characteristics of the acoustic field and the unpredictable
underwater environment. Sonar images are often captured
underwater but then analyzed by a human in a remote location
above water because of the limitation of the processing capaci-
ty of underwater equipment. The transmission of sonar images
via underwater acoustic channels is very likely to contain
distortions since the condition of the underwater acoustic
channel is much worse than that of the terrestrial channel. In
practice, distorted sonar images can truly affect the behavior
of their applications. Under these circumstances, image quality
assessment (IQA) plays an essential role in quality control
and service monitoring. In this paper, we mainly discuss the
sonar IQA metric, aiming at distortions that are caused in the
transmission process and assuming a reasonable quality of the
sonar images selected for transmission.

Diversified contents are included in the field of IQA
methods designed for natural scene images (NSIs). Some of
these methods are dependent on reference information [1]-[3]
and evaluate image quality according to the measurement of
fidelity or distortion. Another important type of IQA method
does not need a reference at all. Most of these methods tend
to establish links between image characteristics (e.g., natural
scene statistic (NSS) model) and image quality that rely on a
learning-based predictive model [4]-[12]. In practice, NSIs are
usually captured for the general interpretation or representation
of a visual scene, and thus, most viewers of NSIs are people
without any expertise. They can judge the perceptual quality
of a NSI according to their common sense and aesthetics. The
perceptual quality of a NSI is associated with the perceptual
similarity of the test image to a reference (the reference may be
either an external or an internal reference). It can be influenced
by contrast, color saturation, sharpness, and many other image
components. In contrast, the viewers of sonar images are
usually experts since sonar images all have specific applica-
tions. Among these applications, detection and recognition are
mostly concerned in this paper because of their wide utilization
in different sonar image-related scenarios. Considering sonar
image applications, utility quality is perceived by viewers of
sonar images. The evaluation of the utility quality of a sonar
image is determined by its performance in specific applications
and cannot be replaced by perceptual quality. Specifically,
sonar images with a clear and complete macroscopic structure
perform better in detection and recognition. Most NSIs are
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(a) (b)

Fig. 1. Examples of NSI and sonar image. These images are
substantially different, and thus, new models for IQA are required for
sonar images. (a) A NSI captured by a camera; (b) A sonar image
captured by side-scan sonar.

created using a camera, which uses a lens to focus the scene’s
visible wavelengths of light onto a copy of what the human
eye would see. For a sonar image, it is captured by sonar,
which emits pulses of sounds and listens for echoes; the
sonar image is then formed according to the arrival time and
intensity of echoes. In addition, the characteristics of sonar
images and NSIs are different. An example of a NSI taken
by a digital camera and a sonar image captured by side-scan
sonar is shown in Fig. 1(a) (b). This example depicts the
characteristics of most NSIs and sonar images, that is, 1) NSIs
are usually colorful and have rich color variations, thick lines,
more details and complex texture content, and 2) sonar images
are mostly characterized by small variation of pixel values,
low contrast, less details and gray levels [13]-[14]. Based on
the above discussion, it can be inferred that the existing IQA
methods designed for NSIs are not suitable for sonar images.
A performance comparison of 9 existing classical and state-
of-the-art reference-based IQA models was conducted on the
sonar image quality database (SIQD) in [15]. The experimental
results illustrate that despite the superior performance of the
aforementioned reference-based IQA models on NSIs, they fail
on sonar IQA. To the best of our knowledge, the research on
sonar IQA is very limited. Moreover, almost no reference-free
IQA method designed for acoustic lens and side-scan sonar
images currently exists, such as the approach used in this
paper. In many underwater applications, such as underwater
acoustic transmission and transmitted image restoration, a
reference image is unavailable. Therefore, it is necessary to
establish a reference-free sonar IQA method.

With the goal of solving the challenging problem above,
we propose a no-reference contour degradation measurement
(NRCDM) for sonar image quality assessment in this paper.
One can deduce whether there is a target or what the terrain is
from the macroscopic structure of a sonar image. Contour is an
important form of macroscopic structure. Therefore, the inte-
grality of the contour to a greater extent determines the utility
quality of a sonar image [16]-[18]. From another perspective,
the quality of an image is dependent on the response of the
human visual system (HVS) to different frequency components
[19]-[21]. The contour information, which is important for
sonar image applications, makes up the intermediate frequency

components, while most distortion types are relevant to high-
frequency or low-frequency components. According to refer-
ence [22], the addition of low-frequency distortion generally
slows the contour degradation degree, and vice versa. Since
the sparsity of different transform coefficient matrices can
represent the energy of macroscopic structures of an image
[23]-[26], the sparsities of three types of transform coefficient
matrices are extracted as features in this paper. Then, the
test image is first filtered by a degradation model, and the
same features are extracted from the filtered version of the
test image. This kind of framework is employed according to
[22], [27], which demonstrated that the addition of distortion
has a real impact on the contour degradation degree. Finally,
the ratios of features before and after degradation are converted
into a quality score by a bootstrap aggregating (bagging)-
based support vector regression (SVR) module, which can
avoid the unsteadiness and overfitting caused by a small-sized
training set [28].

The major contributions of this work are summarized as
three points. As one of the first teams dedicated to sonar
IQA, we conduct many experiments and have conclude that
existing quality assessment methods designed for NSIs or
screen content images are not suitable for sonar images.
Second, we provide a reference-free unified framework for
sonar image quality assessment, which is the first no-reference
quality evaluation algorithm for acoustic lens sonar and side-
scan sonar images. Third, we show that macroscopic structure
is important for relevant types of sonar images via experiments
and analysis and design corresponding quality assessment
methods based on this conclusion. The experimental results
show that the proposed work has better performance, robust-
ness, and efficiency compared to the existing methods.

We arrange the rest of this paper as follows. Section II
provides a review for IQA, and the description of sonar
images, including the introduction of the SIQD database and
a straightforward illustration of the differences between NSIs
and sonar images. Details about the feature extraction and
the bagging-based SVR module are presented in Section III.
In Section IV, performance comparisons of the proposed
NRCDM metric with the existing state-of-the-art reference-
based and reference-free quality models are evaluated using
the SIQD database to validate the superior performance of the
NRCDM metric. The motivation, novelty and some important
information about this paper are summarized in Section V.
This paper is concluded in Section VI.

II. RELATED WORK

A. Previous work

Since there are many mature works about reference-free
IQA algorithms, the previous work closely related to this
paper is briefly reviewed in this section. Most sonar images
are in grayscale, and thus, color-to-gray is not a required
step in the sonar IQA process [29]. Furthermore, it has been
proven in [16] and [30] that image structure is adequate to
correctly evaluate image utility. In addition, image structure
is also one of the most important image components. Over
the past decades, structure-based IQA algorithms have become
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an active research topic. The gradient similarity (GSM) [3]
is one of the most typical algorithms that evaluates structure
and contrast change between reference and distorted images
by gradient similarity under the framework of the popular
structural similarity index (SSIM) [1]. In the gradient magni-
tude similarity deviation (GMSD) [31], the perceptual image
quality is predicted by gradient magnitude similarity combined
with the standard deviation of the gradient magnitude simi-
larity map. GSM and GMSD are implemented on the basis
of the gradient-relevant map, which depicts both macroscopic
structure (such as image contour) and microscopic structure
(such as image details and delicate textures). For sonar images,
macroscopic structure plays a main role in its applications.
Furthermore, Rouse has made efforts to perceive the image
quality utilizing dominant structures. Rouse [16] exploited
both single- and multiscale contour degradation information to
accurately estimate utility quality. Though this work performs
well for NSIs, it is designed in the full-reference mechanism.
Considering the applications of sonar images, the reference-
free methodology may be more suitable.

Without access to any reference information, researchers
usually transform IQA to a regression problem, where the
regressor is trained to establish the link between NSS- and/or
quality-relevant features and image quality. Based on the
features, previous reference-free work generally follows one
of two trends: 1) NSS-based approaches and 2) signal-based
approaches. NSS features have been commonly used for IQA
in recent years. NSS features have been extracted from the
wavelet domain [32]-[33], the discrete cosine transform (DCT)
domain [11] and the spatial domain [40] and are assumed to
contain certain statistical properties, which may be affected
by the presence of distortion. Since the existing NSS models
designed for NSIs are not suitable for sonar images, which
will be verified subsequently, we would prefer a signal based
method. The signal-based approaches usually rely on features
that can represent the quality of images and a quality predic-
tion function. The feature-based approaches can be classified
into three main categories according to the regression methods
selected. The first category is composed of codebook-based
methods [8], which encode the characteristics of images using
a trained codebook, and the relationship between codewords
and image qualities are established. The second category is
neural network-based methods [7], [9]-[10] that use neural
networks to learn the image quality from the feature space.
The last category employs shallow learner-based methods [27],
[34]. These methods are all dependent on a vast amount
of reliable training data to avoid overfitting and to cover
corresponding quality factors as much as possible.

The proposed work differs from previous related works
in three aspects. First, the proposed work focuses on the
statistical characteristics of macroscopic structure instead of
describing sketches, color and details, as most previous works
do. Due to the limited resolution of sonar images, macroscopic
structure, such as contour, is the most important element for
image understanding. In the proposed work, the extraction
of the main structure (i.e., macroscopic structure) will avoid
the interference caused by details, such as texture. Second,
a guided image filter [35] is employed as a degradation

model in this paper, and Gu et al. has proposed a similar
framework by utilizing a degradation model combining both
an autoregressive model and a bilateral filter in [27]. Compared
with this work, the guided image filter has a better edge-
preserving ability and is computationally simpler. Third, since
it is not easy to access a vast amount of sonar images,
the scale of sonar image databases is generally not large.
Commonly used learning machines as mentioned above, such
as neural networks and probabilistic models, require a massive
amount of training data to maintain the balance between bias
and variance. To address this problem, ensemble learning is
employed. We utilize a bagging-based SVR module to improve
the generalization ability of the model by bootstrap sampling.

B. The description of sonar images
1) Image Database: To our knowledge, there is currently

no a standard quality database for sonar images. We have
established the SIQD database, which is made up of 840 sonar
images and their mean opinion scores (MOSs) of utility quality
[15]. Unlike the database of NSIs, subjective viewers of the
SIQD database should be experts. That is, viewers of the SIQD
database should be experienced in work related to underwater
detection and recognition The difference between experts and
nonexperts is that experts have prior knowledge about the pos-
sible content and applications of corresponding sonar images.
It is especially critical for the assessment of utility quality
since the utility quality should be considered under specific
applications, which are unfamiliar to nonexperts. In contrast,
the perceptual quality is independent of specific applications
and professional backgrounds. It is usually evaluated according
to life experiences and aesthetic standards. In the subjective
testing process, viewers are asked to evaluate the quality of
the test image by considering whether it will perform well in
practical applications. In the SIQD database, the applications
mainly refer to object recognition and detection.

Forty reference sonar images are included in the SIQD
database. They are collected by side-scan sonar and acoustic
lens sonar, both of which provide relatively high resolution and
are applied widely in image acquisition. There are 800 distort-
ed sonar images in the SIQD database, and four categories
of distortions are covered in the SIQD database. They are
distortions made by ComGBR coding [36] and SPIHT coding
[37], and manmade bit errors in bitstreams of SPIHT coding
and ComGBR coding, where each has four to five distortion
levels. Due to the narrow bandwidth and complicated condition
of underwater acoustic channels, the good robustness provided
by ComGBR coding and the high compressibility provided by
SPIHT coding meet different underwater acoustic transmission
requirements [38]. In addition, the bit error ratios (BERs)
used in the SIQD database are selected according to recent
achievements in underwater acoustic communication [39]. As
illustrated in Fig. 2, ComGBR coding and SPIHT coding
both introduce some kinds of blur into the image, which are
marked as ‘CC’ and ‘SC’, and the results of bit errors in the
ComGBR coding stream and SPIHT coding stream are noise
and eccentricity, respectively, which are indicated by ‘TC’ and
‘TS’. More details about the SIQD database are tabulated in
Table I.
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(a) (b) (c) (d) (e)

Fig. 2. Examples of sonar images in the SIQD database, which demonstrate the typical distortion types contained in the SIQD database. (a)
Reference image; (b) Distorted sonar image with ‘CC’, MOS=35.15; (c) Distorted sonar image with ‘CS’, MOS=32.34; (d) Distorted sonar
image with ‘TC’, MOS=34.21; and (e) Distorted sonar image with ‘TS’, MOS=35.01.

TABLE I
DETAILS ABOUT THE SIQD DATABASE.

Characteristics Information

Number of reference images 40
Number of distorted images 800

Number of different types of distortions 4
Image resolution 320×320

Rating scales 5-category discrete scale
Evaluation method Single stimulus with multiple repetition

Number of subjective viewers per image 25

2) Differences between NSIs and sonar images: Fig. 1
shows that NSIs and sonar images are different from the visual
perspective. Furthermore, as mentioned above, NSS models
are inadequate compared to sonar images, although the scenes
that sonar images reflect are also the results of a natural
source. To illustrate it clearly, the mean subtracted contrast
normalized (MSCN) coefficients are employed to reflect NSS
characteristics. The statistical properties of MSCN coefficients
have been widely used to establish a NSS model for NSIs since
they vary with the existence of distortions contained in the
image. In particular, the MSCN coefficients of original NSIs
exhibit a Gaussian-like appearance, and the border spectrum
of distorted NSI statistics can be captured by a generalized
Gaussian distribution (GGD) [40], as Fig. 3(a) shows. Fig.
3(a) depicts the histogram of MSCN coefficients of Fig. 1(a),
which is a NSI and its distorted versions. The distortions in
this example are in the four categories contained in the SIQD
database, as mentioned in Section II-B1, i.e., ‘CC’, ‘CS’, ‘TC’,
and ‘TS’. Then, we plot the histogram of MSCN coefficients
of a sonar image with the aforementioned four distortions in
Fig. 3(b). However, as shown in Fig. 3(b), the original sonar
image exhibits a Rayleigh-like MSCN distribution, while the
‘TS’ creates a Laplacian distribution, and ‘CC’, ‘CS’, and
‘TC’ make the histogram of MSCN coefficients similar to an
asymmetric generalized Gaussian distribution (AGGD). Thus,
the NSS models for NSIs are not fully applicable to the quality
evaluation of sonar images, and the features designed for NSIs
might be unsuitable for sonar images.

From the application perspective, perceptual quality is im-
portant for NSIs, while utility quality is considered more for
sonar images. NSIs are primarily for human consumption,

(a) (b)

Fig. 3. The histogram of MSCN coefficients of original and distorted
versions of (a) Fig. 1(a) and (b) Fig. 1(b), which describe the
differences between NSIs and sonar images statistically.

where the individual differences in aesthetic standards will
influence the quality evaluation results to a certain extent.
All of these influences will be taken into account in the
feature extraction and training process of NSI quality as-
sessment. However, most sonar images are used for practical
uses, for example, rescuing, underwater searching, underwater
biological detection, and seabed mapping. Most of these
applications are relevant to recognition and detection, which
are also the key considerations of this paper. In the subjective
quality assessment step of sonar images, the evaluation will
not be affected by any aesthetic element; instead, viewers
perceive the utility quality. The experimental results have
shown that a perceptual quality score is not an alternative
for a utility score. According to the evaluation criteria of
utility quality mentioned previously, macroscopic structure
plays a fundamental role in utility quality assessment based
on recognition and detection. Furthermore, contour, as an
important form of macroscopic structure, is important to the
HVS of object perception[16], [17]-[18]. Accordingly, the
microscopic structure, such as details and complex textures,
is almost negligible in the utility quality assessment of sonar
images. Most existing quality evaluation algorithms aim to
generate scores for the perceptual quality assessment task.
The macroscopic structure and microscopic structure are of
equal importance to perceptual quality assessment. Hence,
existing structure-based IQA methods take both microscopic
and macroscopic structures into account. It might be one of
the reasons why existing IQA models for NSIs fail in sonar
IQA.
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(a) (b)

(c) (d)

Fig. 4. A sonar image and a NSI without detailed information,
which shows the importance of macroscopic structure in a sonar
image. (a) Original NSI “Woman”; (b) Original sonar image “Aircraft
Wreckage”; (c) “Woman” without microscopic structures; and (d)
“Aircraft Wreckage” without microscopic structures.

For comparison, we remove the detailed textures from a
sonar image and a NSI by utilizing the structure extraction
approach proposed in [41]. Fig. 4(a) and Fig. 4(b) are the
original NSI and sonar image, respectively, and Fig. 4(c) and
Fig. 4(d) are the macroscopic structures of Fig. 4(a) and
Fig. 4(b), respectively, employing the same contour extraction
preferences. There are two faces of women in Fig. 4(a),
and aircraft wreckages are the main content of Fig. 4(b).
When detailed structures are removed from a NSI, as Fig.
4(c) shows, it is obvious that only facial contours remain in
the image. The important information, that is, the faces of
women in this example, has been lost, which will significantly
affect the perceptual quality of NSI “Woman”. For the sonar
image, the main object can be recognized from the remaining
dominant structures. It can be concluded from Fig. 4 that
macroscopic structures such as image contour provide the
information for object identification, which is the important
step in the abovementioned sonar image applications, and the
number of details contained by sonar images are fewer than
those contained in NSIs. Therefore, the contour contains the
most useful information of a sonar image, while the useful
information of a NSI can include color, contrast, brightness,
texture, or other image components.

III. METHODOLOGY

A. Algorithm overview

Depending on the aforementioned differences between NSIs
and sonar images, we noted that considerations of IQA for
sonar images are different from considerations applied in
NSIs. First, although the scenes reflected in sonar images are
also a kind of natural scene, they cannot be described using

existing NSS models. That is, NSS-based no-reference IQA
methods do not work efficiently for sonar images. Due to the
differences in visual characteristics, microscopic structures in
sonar images are much fewer than those in NSIs. Hence, the
influence of microscopic structures, such as details, thick lines
and complex texture content, is very limited for sonar IQA.
In contrast, they cannot be ignored regarding the perceptual
quality evaluation for NSIs. For differences in applications, the
utility quality is often discussed for sonar images. The sonar
image utility quality in detection and recognition is highly
relevant to macroscopic structures. However, the quality of
NSIs generally refers to perceptual quality, which is eval-
uated from the view of both microscopic and macroscopic
structures. To sum up, macroscopic structures are the main
consideration of sonar IQA, while the microscopic structures
can be neglected for a more efficient quality assessment. In this
paper, the contour information, which is the main component
of macroscopic structure, is extracted as the main feature
indicating the quality of the sonar image.

To clearly describe the importance of macroscopic structures
for sonar images, we have added a subjective test in the
revised paper. In this test, 50 sonar images, which are not
included in the SIQD database, are selected as test samples.
Then, the macroscopic structures of these images are extracted
according to the approach proposed in [41]. One original
image and its macroscopic structure were displayed in the
user surface at every turn. The viewers were asked to provide
their personal opinions regarding whether they can recognize
the target from the original image and the corresponding
macroscopic structure. After providing their opinions on one
image pair, the viewers were able to continue evaluating the
next pair of images. For 50 image pairs, each viewer took
approximately 10-20 minutes to accomplish the subjective
testing. We collected the subjective opinions from 25 viewers.
They all mastered the basic knowledge about target recognition
from sonar images. The evaluation for each pair of images can
be considered as an event. These events can be divided into
four categories: (1) both the target in the original image and
the macroscopic structure can be recognized, and the cost is
indicated by C11; (2) both the target in the original image and
the macroscopic structure cannot be recognized, and the cost
is indicated by C00; (3) the target in the original image can be
recognized, but the target in the macroscopic structure cannot
be recognized, and the cost is represented by C10; and (4)
the target in the original image cannot be recognized, but the
target in the macroscopic structure can be recognized, and the
cost is represented by C01. The hypothesis in this experiment
is that the important information for target recognition remains
in the macroscopic structure of a sonar image. Under the
minimal error probability criterion (C11 = C00 = 0 and
C10 = C01 = 1), the average cost for each event can be
calculated as 1.93×10−4, which is very close to 0. It is obvious
that this result can support our hypothesis; thus, the proposed
metric is designed based on the importance of macroscopic
structure for sonar images.

Fig. 5 depicts a general framework of the NRCDM metric
considering the utility of sonar images. The degradation model
degrades image contour by filtering some specific frequency
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Fig. 5. A general framework of the proposed NRCDM metric.

components, and the addition of distortions will influence the
effect of the degradation model [22]-[27]. This motivates us to
explore the probability of perceiving distortion by measuring
the degradation degree. We first extract features that reflect
contour information, then measure the contour degradation
degree by comparing features between the test image I and its
filtered version I ′, and finally evaluate the quality of the test
image using such a contour degradation degree in the quality
evaluation module. According to this framework, in Section
III, we describe the proposed methodology from three types of
considerations: (1) the features are extracted in Section III-B;
(2) in Section III-C, we introduce a degradation model, which
is used to degrade test image, and then measure the contour
degradation between the test image and its filtered version by
comparing features extracted before and after degradation; and
(3) in Section III-D, the bagging-based SVR module is trained
to build the relationship between the contour degradation
measured in Section III-C and the subjective quality values
of each sonar image.

B. Feature extraction

The hypothesis that spatial frequency decomposition occurs
in the HVS has been supported in many papers, i.e., the
quality of an image is determined by the response of HVS to
different frequency components [19]-[20]. Furthermore, such
a premise has been successfully used in a simple pattern
recognition system and a model of HVS based on spatial
frequency [21]. Since the utility quality evaluated for sonar
images in this paper is employed on the basis of recognition
and detection, this premise can also be used here. Accordingly,
different components in the image correspond to different
frequencies. The image contour, whose importance to sonar
image applications has been proven above, corresponds to the
intermediate frequency components. The high-frequency and
low-frequency components are made up of most distortion
types. An example is illustrated in Fig. 6, where the distortions
destroy the contour of the sonar image. It can be observed that
distortions corresponding to the increase of high-frequency
components make the frequency spectrum brighter. However,
distortions that add the low-frequency components to the
image make the frequency spectrum darker. The addition of
high-frequency or low-frequency components has a substantial
impact on the image. According to [22]-[27], high-frequency

(a) (b) (c)

(d) (e) (f)

Fig. 6. Illustration of the relationship between the distortion and
frequency component. The distortions destroy the contour of the
sonar image and make the frequency spectrum become brighter or
darker. (a) Reference image; (b) Distorted sonar image with ‘CC’;
(c) Distorted sonar image with ‘TS’; and (d)-(f) Frequency spectrum
of (a)-(c).

Fig. 7. Sparsity vs p for a Bernoulli distribution with coefficients
equal to 0 with probability p or 1 with probability 1− p.

or low-frequency components can change the degradation
degree of the contour under the same degradation model.
In detail, the contour of a sonar image with additional low-
frequency distortion generally has a lower degradation speed,
and vice versa. In this paper, we analyze the quality of sonar
images by the contour degradation measurement.

We collect the contour information from the frequency
domain by extracting features using the DCT and Cohen-
Daubechies-Feauveau 9/7 wavelet transform (C-D-F 9/7). S-
ince singular values of an image also contain the information
of the main contour [26], the singular value decomposition
(SVD) is employed to obtain image contour information from
the spatial domain. The features selected for sonar images
are extracted in the following way. Given a test sonar image
I , we first transform it into the aforementioned domains. We
denote D and C as coefficient matrices of the DCT and the
C-D-F 9/7 wavelet transform and S as the diagonal matrix
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Fig. 8. The flow chart of the feature extraction process.

of the SVD transform. Coefficients with large values of D,
C and S are representative of contour, which is the main
part of the macroscopic structure. These three matrices are
all sparse, and their sparsity depends on the coefficients with
large values. Therefore, the sparsity of different transform
coefficient matrices can be considered as the representation
of contour information. Specifically, D, C and S will either
become more sparse when low-frequency components are
increased or less sparse when high-frequency components are
added.

A sparsity measure should satisfy six criteria: Scaling, Bill
Gates, Rising Tide, Robin Hood, Babies, and Cloning. When
the number of coefficients is fixed, the Hoyer measure and
Gini index satisfy all six criteria. Both the Gini index and
Hoyer measure outperform other sparsity measures, such as l0,
−l1, l2

l1 [23]. An experiment is conducted, wherein we test the
sparsity of a set whose coefficients correspond to a Bernoulli
distribution using the Gini index and Hoyer measure. The
coefficient of this set is either 1 with probability 1−p or 0 with
probability p. As Fig. 7 shows, the sparsity measure increases
when p grows increasingly closer to 1, and we note that this
is the case in both the Gini index and Hoyer measure. When
p increases linearly, the Gini index also increases linearly;
however, the sparsity increases faster when p is close to 1
for the Hoyer measure. This indicates that different sparsity
measures have varying levels of sensitivity to sparsity, i.e., the
sensitivity of different sparsity measures to contour distortion
is different. Therefore, in this paper, we make use of both the
Gini index and Hoyer measure [23] to more comprehensively
describe the contour information. The Hoyer measure and Gini
index are given by the following:

H(c) =

√
N − (

∑N
i=1 | ci |)/

√∑N
i=1 c

2
i√

N − 1
(1)

G(c) = 1− 2
N∑

k=1

c(k)

‖ c ‖1

(
N − k + 1

2

N

)
for c(1) ≤ c(2) ≤ · · · ≤ c(N)

(2)

where c = [c1, c2, · · · , cN ] is a 1D vector that is convert-
ed from 2D transform coefficient matrix. We order c from
smallest to largest, c(1) ≤ c(2) ≤ · · · ≤ c(N), where
(1), (2), · · · , (N) are the new indices after the sorting opera-
tion.

Fig. 8 shows the flow chart of the feature extraction process
for sonar images, where the extracted features, [HD, HC , HS ]
and [GD, GC , GS ], are the Hoyer measure and Gini index of
D, C and S, respectively. Most of the contour information of
a sonar image is contained in these features.

(a)

(b)

Fig. 9. The variation of (a) H′
S

HS
and (b) G′

S
GS

when distortion is
added to the image (the vertical axes correspond to the ratio of (a)
Hoyer measure and (b) Gini index of the diagonal matrix of the
SVD transform before and after degradation, and the horizontal axes
correspond to the image number.).

C. Contour degradation measurement

To measure the degradation degree, a degradation model is
employed in this paper. The guided image filter [35], which
degrades images by smoothing, is applied as the degradation
model. The kernel weights of the guided image filter can be
clearly expressed as follows:

Wij(P ) =
1

| ω |2
∑

k:(i,j)∈ωk

(
1 +

(Pi − µk)(Pj − µk)

σ2
k + ε

)
(3)

where ωk is a window, | ω | is the number of pixels in ωk,
µk and σ2

k are the mean and variance of the guidance image
P in ωk, respectively, and ε is a regularization parameter that
determines whether the current pixel should be the average of
the pixels nearby or preserved. The degradation intensity of
the guided image filter can be controlled by the regularization
term ε, which has a positive correlation with [HD, HC , HS ]
and [GD, GC , GS ]. Through the theoretical analysis and exper-
imental check, it can be observed that the sparsity of different
transform coefficient matrices increases as ε grows, i.e., the
sparsity of different transform coefficient matrices is relevant
to the degradation caused by the guided image filter.

The guided image filter should be fixed so that the relation-
ship between the degradation degree and distortions contained
in the test image (or qualities of the test images) can be built
by a regression model. In this paper, we set ε at a fixed value
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(ε = 0.01) and measure the degradation degree, as Eq. 4
shows:

F =
f2
f1

= [
H ′D
HD

,
H ′C
HC

,
H ′S
HS

,
G′D
GD

,
G′C
GC

,
G′S
GS

] (4)

where H ′D, H
′
C , H

′
S and G′D, G

′
C , G

′
S represent the Hoyer

measure and Gini index of three transform coefficients of
the filtered test sonar image I ′, respectively. Since distortion
might exist in the test sonar image I , the effect of distortion
will be reflected in the degradation degree of I , that is, the
effect of distortion can be reflected in F . To demonstrate this
supposition, Fig. 9 shows the variation of H′

S

HS
and G′

S

GS
when

distortion is added to the test sonar image, where image 1 is
the pristine sonar image without any distortion and image 2 to
image 5 are the distorted versions of image 1. In detail, image
2 contains ‘TC’, image 3 is afflicted with ‘CC’, image 4 is
distorted by ‘TS’, and there is ‘CS’ in image 5. As seen from
Fig. 9, H′

S

HS
and G′

S

GS
are related to the distortion contained in

a sonar image. In the next section, we try to determine such
a relation with the help of bagging-based SVR.

D. Bagging-based SVR module
Conventional quality evaluation models connecting features

to evaluated quality only include a single model trained on
a subspace of a test database. However, it is easy to prove
that the employment of multiple models will improve the
performance of the quality evaluation module. To convert the
extracted features into a quality index of a sonar image, we
employ bagging to build the relationship between extracted
features and qualities of sonar images. Bagging is one of the
ensemble learning algorithms for statistical classification and
regression. In this case, bagging provides multiple versions
of a base learner of a regression task and uses these learners
to obtain an aggregated result [42]. Theoretical research and
experimental results indicate that it can improve the stability
and accuracy of machine learning algorithms. In addition, it
can also reduce variance and help to avoid overfitting caused
by a small-sized training set [42]. For a standard training set
T of size N , bagging generates n new training sets, which are
denoted by Ti, each of size N ′, by sampling from T uniformly
and with replacement. This implementation may lead to the
repetition of some observations in Ti. When N = N ′, this
kind of sample is called a bootstrap sample. The base learners
S1(·), S2(·), · · · , Sn(·) are fitted using the above n bootstrap
samples and combined by averaging the outputs:

NRCDM Score =
1

n
·

n∑
i=1

Si(t) (5)

Our training set based on the SIQD database includes 840
sonar images, that is, N = 840, among which approximately
672 samples will be used for model training (80% of the
SIQD database contents), and the other 168 (20% of the SIQD
database contents) are the testing samples. There is no overlap
between the training set and the testing set. In this paper, SVR
is selected as the base learner due to its superior performance.
We will discuss the selection of the number of SVR models
in the following section since the number of SVR models is
relevant to the performance.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Testing Metric and Evaluation Protocols

1) Criteria: To assess the performance of the proposed
NRCDM metric, the correlation results between the evaluated
quality scores and human opinions are reported using four
representative criteria. These criteria can be divided into three
categories: 1) prediction monotonicity index, including Spear-
man rank order correlation coefficient (SROCC) and Kendall’s
rank order correlation coefficient (KROCC); 2) prediction
accuracy measure, that is, Pearson linear correlation coefficient
(PLCC); and 3) prediction consistency index, which consists of
the root mean square error (RMSE). Since there is nonlinearity
between original subjective score (MOSs) and objective score
process which is caused by the subjective rating, a logistic
procedure is applied to remove the nonlinearity, as is defined
in Eq. 6:

Qp = β1(
1

2
− 1

1 + exp(β2(Qo − β3))
) + β4Qo + β5 (6)

where the objective score is represented by Qo, and Qp

denotes the IQA score after regression. Additionally, β1 to β5
are parameters of the regression model, which are determined
by minimizing the sum of squared differences between the
mapped Qp and MOS. The SROCC and KROCC are mea-
sured between MOS and Qo, while PLCC and RMSE are
evaluated between MOS and Qp. A superior correlation with
the subjective scores should lead to high values in SROCC,
PLCC and KROCC (close to 1) and low values (close to 0)
in RMSE.

Since the uncertainty of subjective scores is overlooked
by the above stated performance evaluation metrics, a novel
performance evaluation method considering the statistical sig-
nificance of the subjective scores is employed as a supplement
to the aforementioned performance evaluation metrics [43]. It
can easily combine data from different experiments without
considering their source, range, or format methods. First, the
z-score for each pair of stimuli (i, j) is calculated using Eq.
7:

z(i, j) =
|MOS(i)−MOS(j) |√

var(i)
N(i) + var(j)

N(j)

(7)

where var(·) is the variance of collected subjective scores,
and N is the number of subjective viewers. Then, the cu-
mulative distribution function (cdf) of the normal distribution
is employed to measure the probability that the stimuli are
different, as Eq. 8 shows:

ps = cdf(z) =
1√
2π

∫ z

−∞
exp(

z2

2
)dz. (8)

When ps(i, j) is greater than 0.95, stimuli (i, j) is considered
to be significantly different. Then, the predicted qualities
provided by the selected IQA methods will be processed as

∆m(i, j) = qm(i)− qm(j) (9)

where qm(·) is the objective quality predicted by a particular
IQA method m. The percentage of correctly recognized stimuli
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Fig. 10. The influence of the number of repetitions on performance.

Fig. 11. The influence of the number of SVR models on performance.

of higher quality from the significantly different pairs selected
by the IQA methods is measured as

C0 =
Ψm

Ψ(i,j)
(10)

where Ψ(i,j) and Ψm represent the number of stimuli of higher
quality counted from the MOS values and the number of
stimuli of higher quality that can be recognized by the IQA
method m, respectively. The initial purpose of this method
is to evaluate whether an objective model can reliably rec-
ognize the better/worse one from two stimuli. The behaviors
of different objective methods are compared by contrasting
their percentages of correct classification (C0) with statistical
significance, where higher C0 (close to 1) corresponds to better
performance.

2) Algorithms: For the purpose of evaluating the effec-
tiveness of the proposed NRCDM metric, two classes of
IQA models (metrics) that have been demonstrated to be
performance-efficient were chosen for comparison. The first
class is composed of seven reference-based IQA metric-
s: LESQP [15], SSIM [1], VSNR [2], CPCQI [44], GSM
[3], SVQI [45], PSNR. The second class consists of eleven
reference-free IQA algorithms: BLIINDS II [11], BQMS [22],
ASIQE [27], BRISQUE [40], SISBLIM [46], IL-NIQE [47],
CurveletQA [48], NFERM [49], ARISM [50], BPRI [51],
HOSA [52].

3) Model training: All experiments presented in this sec-
tion are based on the bagging-based SVR module. In this
paper, we learn the bagging-based SVR module in a training
set that includes 63.2% of the sonar images from the SIQD
database, and the module is tested in a testing set consisting of
the remaining 36.8% of the sonar images. There is no overlap
between the training set and the testing set. In this way, we can
prevent the occurrence of experimental results that depend on
features extracted from known content. In addition, to exclude
the performance bias, random choice of training and testing
sets is repeated for several iterations. Since the influence of
the number of repetitions on the performance is very small, as

TABLE II
PERFORMANCE COMPARISON OF FEATURES RELATED TO THE

HOYER MEASURE, FEATURES RELATED TO THE GINI INDEX AND
THE COMBINATION OF THESE TWO KINDS OF FEATURES.

Features SROCC KROCC PLCC RMSE

Hoyer measure-related features 0.562 0.385 0.585 11.113
Gini index-related features 0.478 0.325 0.499 11.898

Combination 0.709 0.514 0.734 9.498

TABLE III
PERFORMANCE COMPARISON OF FEATURES EXTRACTED FROM

DIFFERENT TRANSFORM DOMAINS.

Features SROCC KROCC PLCC RMSE

[
H′

D
HD

,
G′

D
GD

] 0.583 0.406 0.605 10.827

[
H′

C
HC

,
G′

C
GC

] 0.474 0.327 0.508 11.891

[
H′

S
HS

,
G′

S
GS

] 0.506 0.348 0.542 11.567

[
H′

D
HD

,
G′

D
GD

,
H′

S
HS

,
G′

S
GS

] 0.562 0.388 0.583 11.105

[
H′

D
HD

,
G′

D
GD

,
H′

C
HC

,
G′

C
GC

] 0.510 0.350 0.536 11.551

[
H′

S
HS

,
G′

S
GS

,
H′

C
HC

,
G′

C
GC

] 0.529 0.363 0.563 11.421

All features 0.709 0.514 0.734 9.498

Fig. 10 shows, the average of the performance criteria across
100 repetitions is reported as the results in this paper.

B. Parameter and Feature Selection

The bagging-based SVR module is applied in the NRCDM
metric to improve the performance, and the number of SVR
models is related to its performance. Fig. 11 shows the influ-
ence of the number of SVR models, where the horizontal axis
corresponds to the number of SVR models, and the vertical
axis indicates the corresponding performance of the bagging-
based SVR module. As seen from Fig. 11, the performance
increases first and then tends to stabilize gradually as the
number of the used SVR models increases. The number of
SVR models is selected as 20 since it can nearly provide the
best performance.

We have chosen six features, i.e., two sparsity measures
of three image transform coefficient matrices, to establish
the NRCDM metric. First, to verify the contribution of the
combination of two sparsity measures, we examine the per-
formance of the Hoyer measure and Gini index. The qual-
ity prediction performances with the features related to the
Hoyer measure ([H

′
D

HD
,
H′

C

HC
,
H′

S

HS
]) and the features related to

the Gini index ([G
′
D

GD
,
G′

C

GC
,
G′

S

GS
]) are tabulated in Table II by

SROCC, KROCC, PLCC, and RMSE. The best performance
is indicated in bold. As observed in Table II, employing
one sparsity measure can only provide poor performance,
and the combination of two sparsity measures enhances the
performance, which verifies the effect of the combination that
we explained in Section III-B. We have also built the bagging-
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TABLE IV
PERFORMANCE COMPARISON WITH AND WITHOUT “BAGGING”.

Without bagging SROCC KROCC PLCC RMSE

Training set 0.736 0.533 0.753 9.206
Testing set 0.682 0.484 0.709 9.681

With bagging SROCC KROCC PLCC RMSE

Training set 0.738 0.542 0.759 9.146
Testing set 0.709 0.514 0.734 9.498

TABLE V
PERFORMANCE COMPARISON OF THE NRCDM METRIC AND

REFERENCE-BASED IQA METHODS ON THE SIQD DATABASE.

IQA SROCC KROCC PLCC RMSE

SSIM 0.654 0.469 0.673 10.345

VSNR 0.433 0.299 0.476 11.990

PSNR 0.622 0.443 0.639 10.760

GSM 0.642 0.455 0.658 10.533

SVQI 0.666 0.473 0.691 10.110

CPCQI 0.549 0.377 0.567 11.517

LESQP 0.785 0.593 0.796 8.474
NRCDM 0.709 0.514 0.734 9.498

TABLE VI
COMPARISON OF THE STATISTICAL SIGNIFICANCE OF THE

NRCDM METRIC AND REFERENCE-BASED IQA METRICS ON THE
SIQD DATABASE

IQA SSIM VSNR PSNR GSM SVQI CPCQI LESQP
Index +1 +1 +1 +1 0 +1 0

based SVR modules for features extracted from each domain
and the combination of two of three domains. The performance
comparison is tabulated in Table III. In Table III, ‘All features’
denotes the features extracted from the DCT domain, C-D-
F 9/7 wavelet transform domain, and SVD domain, that is,
[
H′

D

HD
,
H′

C

HC
,
H′

S

HS
,
G′

D

GD
,
G′

C

GC
,
G′

S

GS
]. We find that the combination of

features extracted from all three domains obtains a significant
performance gain compared with features extracted from only
one or two domains.

To prove the effectiveness of ‘bagging’, we first compare the
performance of the proposed method on the training set and
testing set. Then, we replace the bagging-based SVR with the
normal SVR. The experiments are repeated 100 times in 100
randomly divided training-testing sets (completely nonover-
lapping). The average experimental results are tabulated in
Table IV. The following conclusions can be obtained from
Table IV: (1) since the performances of the bagging-based
SVR and normal SVR are close to each other in the training
set, the extracted features are a good representation of the
characteristics of sonar image samples, and (2) it is obvious
that the addition of the bagging-based SVR increases the

performance of the proposed method in the testing set, which
can be a good justification of the efficiency of ‘bagging’.

C. Performance Evaluation

1) Performance Comparison with Existing IQA Method-
s: We compare the performance of the proposed NRCDM
metric with the classical and state-of-the-art reference-based
IQA methods. Since reference information is available for
the reference-based IQA method, most of them show better
performances than reference-free methods. We tabulate the
performances of seven reference-based IQA methods in Table
V and then highlight the best and the second best performance
in bold font and underline, respectively. Among the selected
IQA methods, the LESQP metric, which was designed for
sonar images, is approximately 10% better than the proposed
NRCDM metric, but the NRCDM metric needs no reference
information, while the LESQP is reference-dependent. Except
for LESQP and NRCDM, the SVQI metric shows superior
performance compared to the rest of the reference-based IQA
methods, and the SSIM, GSM and PSNR behave similarly but
slightly worse than SVQI. All the selected methods except
LESQP show good performances for NSIs or screen content
images, but their performances are worse than or close to the
NRCDM metric, as Table V shows. In addition, to statistically
compare the performance of the selected algorithms and the
proposed NRCDM metric, the F-test is employed here [52]-
[53]. First, the ratio of the prediction residual variances of the
regressed objective qualities (using the five-parameter logistic
nonlinear regression function) and MOS values is denoted
as Ft. Then, the critical threshold, which is decided by the
number of residuals and the confidence level, is denoted by
Fct. In the case of Ft > Fct, the performance of these two
testing IQA methods can be regarded as significantly distinct;
then, by considering Table V, the statistically superior one can
be decided between the two testing IQA methods. In this paper,
the confidence level is assigned to be 95%. The results of the
significance comparison are tabulated in Table VI, where ‘+1’
represents that the proposed NRCDM metric is significantly
superior to the associated metric, and ‘0’ or ‘−1’ means that
our NRCDM metric is significantly equivalent or worse than
the comparable IQA method. As seen from Table VI, the
proposed NRCDM metric is significantly better than most of
the selected reference-based IQA methods. Only the SVQI
and LESQP, which are full-reference methods, are statistically
indistinguishable from our NRCDM metric.

Having compared the NRCDM metric with the reference-
based IQA methods, we now demonstrate the performance
of the NRCDM metric for different types of distortion. Fig.
12 shows the performance comparison of the NRCDM metric
for different distortions on the SIQD database, where the
horizontal axis represents the distortion types contained in the
SIQD database, and the vertical axis represents the value of
the corresponding criteria. It can be observed that the NRCDM
metric shows the best prediction monotonicity and accuracy
for distorted sonar images with ‘TC’. The best prediction con-
sistency is obtained for distorted sonar images with ‘CS’. The
distortion ‘CC’, which is relevant to blur, makes the NRCDM
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(a)

(b)

Fig. 12. Performance comparison for different distortions contained
in the SIQD database. (a) SROCC, PLCC and KROCC; (b) RMSE.

metric perform poorly on prediction monotonicity and accura-
cy. The worst prediction consistency appears on sonar images
with ‘TS’, which contains messy, unnatural marks. Then, we
compare the performance of the NRCDM metric and the state-
of-the-art reference-free IQA methods. We bold the algorithm
with the best performance and underline the algorithm with
the second best performance. It can be concluded from Table
VII that the proposed NRCDM metric is competitive with all
the selected reference-free IQA algorithms. The performance
gain of the proposed NRCDM metric is approximately 16%
in terms of SROCC, 21% in terms of KROCC and over
19% and 14% in terms of PLCC and RMSE, respectively,
in comparison with the second-ranking reference-free IQA
metrics, which indicates the improvement in performance
accuracy, consistency and monotonicity. Only the proposed
NRCDM metric achieves a performance greater than 0.7 for
SROCC and PLCC and greater than 0.5 for KROCC but lower
than 10 for RMSE. Similarly, the F-test is also implemented
between the NRCDM metric and the selected reference-free
IQA methods, and the results are tabulated in Table VIII. It
is obvious that the proposed NRCDM metric is significantly
superior to the other eleven reference-free IQA methods.

To compare the performances of the selected reference-free
methods by C0, we first numbered eleven selected methods
and proposed NRCDM methods according to Table IX. The
results of C0 for different IQA methods are shown in the left
of Fig. 13. In addition, to statistically compare C0 among
multiple IQA methods, Fisher’s exact test and a Benjamini-
Hochberg procedure are employed here [43]. The statistical
analysis of C0 is supplemented in the right of Fig. 13, where
the gray boxes in the significant plots correspond to the cases
where the model in the column performs similar to the model
in the row. When the model in the column outperforms the
model in the row, the corresponding box is black; otherwise,

TABLE VII
PERFORMANCE COMPARISON OF REFERENCE-FREE IQA

ALGORITHMS ON TEST SONAR IMAGES

IQA SROCC KROCC PLCC RMSE run-time (s)

BLIINDS II 0.441 0.302 0.448 12.505 14.70

BRISQUE 0.607 0.425 0.614 11.036 3.00× 10−4

IL-NIQE 0.553 0.394 0.591 11.282 6.53× 10−2

ARISM 0.451 0.308 0.465 12.384 2.51

NFERM 0.423 0.290 0.441 12.552 14.81

SISBLIM 0.421 0.296 0.515 11.985 8.68× 10−1

ASIQE 0.308 0.211 0.508 12.043 2.91× 10−1

BQMS 0.374 0.257 0.444 12.533 14.49

CurveletQA 0.424 0.289 0.504 12.075 6.64× 10−1

BPRI 0.445 0.309 0.474 12.314 4.01× 10−1

HOSA 0.567 0.392 0.564 11.548 3.17× 10−1

NRCDM 0.709 0.514 0.734 9.498 7.78× 10−2

TABLE VIII
COMPARISON OF THE STATISTICAL SIGNIFICANCE OF THE

NRCDM METRIC AND REFERENCE-FREE IQA METRICS ON THE
SIQD DATABASE

IQA BlIINDS II BRISQUE IL-NIQE ARISM NFERM
Index +1 +1 +1 +1 +1

SISBLIM ASIQE BQMS CurveletQA BPRI HOSA
+1 +1 +1 +1 +1 +1

TABLE IX
NUMBER OF SELECTED REFERENCE-FREE METHODS

Number 1 2 3 4
IQA NRCDM BQMS IL-NIQE NFERM

Number 5 6 7 8
IQA SISBLISM ARISM ASIQE BLIINDS II

Number 9 10 11 12
IQA BPRI CurveletQA HOSA BRISQUE

the box is white. From Fig. 13, we can observe that the
NRCDM metric (#1) performs statistically better than the
other selected reference-free IQA methods. Apart from the
NRCDM metric, ARISM (#6), ASIQE (#7) and CurveletQA
(#10) also show competitive performance, considering the
ability to recognize the better/worse one from two stimuli.

2) Computational Time Comparison: The comparison of
computational time is implemented by using the software plat-
form of MATLAB R2014a on a computer with 3.60 GHz CPU
processor and 8.00 GB RAM. We obtained the source codes
of the selected IQA metrics from the authors or websites. For
each IQA method, we first compare the time consumption
for all images on the SIQD database and then report their
average in the last column of Table VII. Although the NRCDM
metric is not the fastest one, its performance is 16% better
than the fastest competitor: BRISQUE. Additionally, it takes
less processing time than most of the selected methods and is
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Fig. 13. The results and statistical analysis of C0 (%) for the SIQD
database.

(a) (b) (c)

(d) (e) (f)

Fig. 14. Examples of the quality predictions provided by the NRCDM
metric, which shows the good performance of the proposed NRCDM
metric. (a)-(c) Reference sonar images; (d) Distorted version of (a),
MOS=55.24, NRCDM score=56.95; (e) Distorted version of (b),
MOS=36.31, NRCDM score=37.54; and (f) Distorted version of (c),
MOS=36.37, NRCDM score=38.12.

approximately 5 times faster than BPRI and HOSA, 10 times
faster than SISBLIM and CurveletQA, 30 times faster than
ARISM and approximately 100 times faster than BLIINDS II,
NFERM and BQMS.

3) Intuitive Comparison: For visual comparison, Fig. 14
shows examples of quality predictions provided by the NRCD-
M metric, which are very close to the MOS value provided by
the SIQD database. In addition, scatter plots between MOSs
and predictive qualities yielded by the eight selected reference-
free IQA metrics and the NRCDM metric are presented in
Fig. 15. In each scatter plot, distinct symbols are used to
discriminate different distortion types: red circle for ‘CC’,
green square for ‘CS’, dark-blue diamonds for ‘TC’, blue
triangle for ‘TS’, purple inverted triangle for reference images
without any distortion, and the red line is the five-parameter
logistic mapping curve between predictive qualities and MOSs.
Then, we provide scatter plots between the regressed predictive
qualities and MOSs in Fig. 16. Regardless of considering
either Fig. 15 or in Fig. 16, the quality scores predicted by
our NRCDM metric show the best correlation to MOSs when
compared with scatter plots of the other reference-free IQA
metrics.

V. SUMMARY

This paper proposes a contour degradation measurement for
sonar IQA. The motivation of this work includes the following
two points. First, due to the poor condition of the underwater
acoustic channel, quality monitoring during compression and
transmission is of significance to system optimization. To the
best of our knowledge, little has been devoted to reference-
free sonar IQA; therefore, it is a pivotal but unsolved topic.
Second, the proposed method in this paper is motivated
by the characteristics and applications of sonar images. In
detail, object detection and recognition are two important
applications of sonar images. They can be implemented by
extracting macroscopic structures, typically in the form of
contour measurements. The sonar images are characterized by
less details and the grayscale, which indicates that microscopic
structures can be negligible and of less importance compared
to macroscopic structures. Inspired by the above two points,
macroscopic structure information is extracted to represent the
distortion of sonar images in this paper.

As mentioned earlier, contour is one of the important
forms of macroscopic structures; consequently, we use contour
information to represent macroscopic structures. The contour
information is extracted from the sparsity of different trans-
forms of sonar images. Then, the distortion of the sonar
image is measured by the contour degradation degree after
filtering. We have adopted an efficient approach in this paper
for extracting contour information. Because of the complexity
of the acquisition environment, it is difficult to obtain a large
amount of sonar images. Thus, the size of the SIQD database
is small. Considering the small scale of the SIQD database,
“bagging” is employed to avoid the overfitting problem. On
the one hand, the proposed mixture of different techniques
takes both application requirements and database conditions
into account. Furthermore, its effectiveness has been verified
by experiments. On the other hand, a new technology for sonar
IQA is one of our important research interests in our future
work.

The novelty of this work can be reflected in the two points
below. First, sonar IQA is a novel and imperative topic. To
date, few efforts have been devoted to sonar IQA, which
might be due to the following reasons: 1) the underwater
environment for image acquisition and transmission is com-
plicated, and 2) many differences between sonar images and
typical visual images exist. To the best of our knowledge,
we are one of the first teams to study sonar image quality
assessment considering underwater acoustic transmission and
have presented a simple and efficient strategy for addressing
this difficult issue to a certain extent. Second, the importance
of macroscopic structure represented by contour measurement
has been employed to capture the effects of distortion in sonar
image applications. In addition, its feasibility has been demon-
strated through theoretical analysis and synthetic experiments.

VI. CONCLUSION

Sonar images carry important underwater information since
they can reflect underwater scenes in darkness. Due to the
poor condition of underwater acoustic channels, transmitted
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 15. Scatter plots of MOS versus model prediction. Each sample point represents one test image. (a) BLIINDS II; (b) BRISQUE; (c)
IL-NIQE; (d) ARISM; (e) NFERM; (f) SISBLIM; (g) ASIQE; (h) BQMS; (i) CurveletQA; (j) BPRI; (k) HOSA; and (l) NRCDM.

sonar images often contain different distortions after lossy
compression and underwater transmission. It is necessary to
build a sonar image quality evaluation model for transmission
monitoring. Although there have been many well-established
IQA models for NSIs, they do not work for sonar images.
The reason can be summarized by the following two points.
First, viewers perceive utility quality in the subjective quality
assessment step for sonar images due to its application, while
most existing IQA algorithms generate a perceptual quality
score, which is not an alternative for utility qualities. Second,
the macroscopic structures, which contain the most important

information for sonar image applications, are relevant to the
utility quality of sonar images, but most existing structure-
based IQA models for NSIs take both macroscopic and mi-
crocosmic structures into account. To address these problems,
we have established a degradation measurement-based IQA
metric (NRCDM) for sonar images. First, we transform an
image into three domains: the DCT domain, C-D-F 9/7 wavelet
transform domain and SVD domain. Then, the sparsity of
coefficient matrices of these three domains is measured using
the Hoyer measure and the Gini index as features. We extract
the same features after degrading the test image by blur
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 16. Scatter plots of MOS versus regressed model prediction. Each sample point represents one test image. (a) BLIINDS II; (b) BRISQUE;
(c) IL-NIQE; (d) ARISM; (e) NFERM; (f) SISBLIM; (g) ASIQE; (h) BQMS; (i) CurveletQA; (j) BPRI; (k) HOSA; and (l) NRCDM.

degradation using a guided image filter. To establish the
correlation between features and image quality, a bagging-
based SVR module is trained in this paper. The ratios of
features before and after degradation are the input of this
module, while the output is a NRCDM score that represents
the quality of the test image. The performances of the proposed
NRCDM metric and the existing classical and state-of-the-art
IQA algorithms on the SIQD database are compared in this
paper. The experimental results show the poor effect on sonar
images of the IQA algorithms that are designed for NSIs and
the superiority of the reference-free NRCDM metric over the

available quality evaluation models.
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